MINNESOTA TIMSS: The Rest of the Story

A SUMMARY OF RESULTS AS OF OCTOBER 2009

TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY

MINNESOTA SCIENCE AND MATH COMPARED INTERNATIONALLY IN TIMSS: REVIEWING THE CONTEXT

The 2007 TIMSS is referred to as the Trends in International Mathematics and Science Study. With over 60 participants and 425,000 students assessed, TIMSS 2007 is still the largest study of student math and science achievement in the world. Fourth and eighth grade students were the focus in 2007 and each participating country sampled approximately 4,000 students in 150 schools.

SciMath ${ }^{\text {MN }}$ sponsored Minnesota's 1995 participation as a 'mini-nation' in TIMSS, and was selected to analyze the 2007 Minnesota TIMSS results, where Minnesota again participated as a mini-nation.

Mini-nation status allows Minnesota to participate as if it were a nation, establishing our ranking among the other participating nations and providing insight into our students' ability to compete on a global scale.

WHERE WAS MINNESOTA
 MATHEMATICS IN 2007?

MINNESOTA'S 2007 TIMSS MATHEMATICS PERFORMANCE

- The Minnesota $4^{\text {th }}$ grade performance gain was among the largest of any of the 16 countries that participated in both the 1995 and 2007 TIMSS ($p<.05$).
- The Minnesota $4^{\text {th }}$ grade gain, which was over a third of a standard deviation, was
more than three times the gain indicated for the U.S. as a whole.
- At 8th grade, Minnesota's 2007 gain over 1995 was substantially less than the $4^{\text {th }}$ grade gain - about one tenth of a standard deviation - which was not statistically significant ($p<.11$).
- A similar pattern of improvement from 1995 to 2007 for both the U.S. as a whole and Minnesota can be noted with the NAEP results.

WHERE WAS MINNESOTA SCIENCE IN 2007?

2007 TIMSS SCIENCE PERFORMANCE:

- In contrast to the performance in mathematics, in science neither the U.S. nor Minnesota demonstrated significantly different performance in 2007 than in 1995.
- In 2007, Minnesota maintained its relatively high level of performance, being outperformed by very few countries at either $4^{\text {th }}$ or $8^{\text {th }}$ grade and significantly outperforming the U.S. at grade 8.

WHAT HAS HAPPENED SINCE MINNESOTA PARTICIPATED LAST
 IN 1995?
 MORE THAN A DECADE OF ACTION

Minnesota has not stood idle in the twelve intervening years between these tests. A number of significant statewide educational changes have been implemented:

- State standards in mathematics and science were implemented in 1997 and have since been revised twice.
- Rigorous high stakes tests (Minnesota Comprehensive Assessments) have been in place since 1998 in mathematics (and 2008 for science).
- SciMath $^{\text {MN }}$ developed Frameworks for teaching mathematics and science (based on Minnesota state standards) that were widely distributed and used throughout Minnesota.
- Standards-based mathematics curriculum increased in use -
especially in larger districts, thereby impacting the majority of students in the state.
- Increased classroom time has been allocated in many districts to the tested subjects - especially at the elementary level.
- Graduation requirements in both mathematics and science have significantly increased.
- Algebra will be required for all $8^{\text {th }}$ grade students in the year 2011, and Algebra II will be required of the same cohort of students for graduation in 2015; graduates of 2015 must also complete either chemistry or physics. Many districts have already initiated the change process to prepare students for these requirements.
- SciMath ${ }^{\mathrm{MN}}$ shared Minnesota's participation in the 1995 TIMSS with many districts, which produced valuable lessons for the districts becoming resources for staff development and decision-making.

MINNESOTA 2007 TIMSS REPORT MATHEMATICS - THE REST OF THE STORY

TEACHING EMPHASIS
Preliminary results for Minnesota on the 2007 TIMSS assessment released in December 2008 and February 2009 indicated that $4^{\text {th }}$ grade teachers in Minnesota are distributing their teaching time in closer alignment to teachers in high performing countries, which puts them in closer alignment with the Framework for the TIMSS Assessment. This Framework is also closely aligned with Minnesota's testing expectations as indicated in Test Specifications for the Minnesota Comprehensive Assessment II. This latter has likely affected teacher practice and adjusted emphasis on strands since 1995 for most teachers.

For example at Grade 4, in 1995 teachers spent about 35% of their time on number, which should be the major focus of instruction at $4^{\text {th }}$ grade, based on the TIMSS Framework, practice in high performing countries, and recommendations from multiple organizations and bodies of research. The TIMSS Framework specifies that about 50% of the content at $4^{\text {th }}$ grade will be on number. By 2007, teachers reported spending about 55% of their time, on average, on number, much closer to the TIMSS expectations, and no doubt partly influenced by
state testing expectations which specify 40% on number and 15% on patterns and functions, which at $4^{\text {th }}$ grade is closely related to number.

Looking at other strands also gives better alignment. In 1995, Minnesota teachers reported spending about 20% of their time on geometry. This increased to 25% in 2007, closer to but still less than the 35% on the TIMSS assessment of the 30% on Minnesota assessments. The 1995 emphasis of only 5\% on data increased to about 15% at the $4^{\text {th }}$ grade in 2007, matching both the TIMSS distribution and Minnesota test requirements. In $19954^{\text {th }}$ grade teachers reported spending about 40% of their time on "other", more than any other strand, whereas in 2007 this decreased to less than 5% of their time. This change alone is likely to have affected improved test results. (See Figure 1)

Figure 1b shows how the 2007 MN focus compares to the international focus. Compared to 1995 , the variability in the reported percent teacher time devoted to Geometry and Data is greater in 2007. (Figure 1b)

Figure 1

Figure 1a
MINNESOTA TIMSS TEACHING TIME IN 1995 AND 2007
Figure 1b
Grade 4 Mathematics

At the $8^{\text {th }}$ Grade there is a similar story with regard to all strands, especially algebra, which is a major focus of instruction at this grade in the top performing countries, the TIMSS Content Framework, and Minnesota's 2007 standards (which were not in place at the time of the 2007 TIMSS assessment).

In 1995 8 $^{\text {th }}$ grade Minnesota teachers reported spending about 10% of their time on algebra; this changed to nearly 50% in 2007. TIMSS Specifies 30%; Minnesota also specifies 30%. For the Number strand, in 1995 8 $^{\text {th }}$ grade teachers reported spending about 40% on number; by 2007 this was reduced to 20%. TIMSS indicates 30% for Number at grade 8, while Minnesota specifies about 25\%.

There was little change for the Geometry strand, with teachers reporting about

15\% for both 1995 and 2007. TIMSS indicates 20% for Geometry at grade 8, while Minnesota specifies 30\%.

For the Data strand, teachers moved from about 5% in 1995 to 15% in 2007, matching the Minnesota test specifications of 15%, but slightly less than the TIMSS Framework indicator of 20\%.

Finally, as at $4^{\text {th }}$ grade, the category of "Other", which represented about 30% of time in 1995, was less than 5\% in 2007. (See Figure 2) Figure 2b shows how the 2007 math focus compared to the international focus. Compared to 1995, the variability in the reported percent of teacher time devoted to Geometry and Algebra is greater in 2007. (Figure 2b)

Figure 2

Figure $2 a$
Grade 8 Mathematics

Figure 2b

- A major shift in the implemented curriculum is apparent in 8th grade. This is evident from the increase in reported percent teaching time devoted to Algebra. On average (Median), in 2007 MN teachers report spending more than 50% of teaching time on Algebra topics compared to less than 10% of teaching time on the same topics in 1995.
- The percentage of reported time on coverage of Data Representation also shows an increase-median percentage of approximately 15% in 2007 compared to approximately 5% in 1995.
- The reported percent time on Number, Geometry and "other" mathematics topics show a decrease in 2007 compared to 1995.

Race/ minority status

There is some data on the performance of students in schools with different proportions of minority enrollment.

For $4^{\text {th }}$ grade students, on the number strand, those in schools with 25% or less of minority enrollment performed the highest, on par with Japan, and above the overall Minnesota average. Students in schools with minority enrollment between 25 and 75\% minority performed less well, slightly below the US average. Students in schools with more than 75% minority students performed least well, placing them between the Ukraine and Iran.

Teachers in schools with more than 75% minority enrollment spend about the same proportion of their teaching time on number as most teachers in Minnesota; nevertheless their students perform less well. (Figure 3)

Grade 4 Teaching Time in Number and Mean Mathematics Score by Percentage of Minority Student Enrollment in School

© 2008 Center for Research in Mathematics and Science Education, Michigan State University
Figure 3

At the $8^{\text {th }}$ grade, a similar result occurs on the algebra strand. Students in schools with less than 25% minority enrollment score better than the Minnesota average, those in schools with between 25 and 75% minority enrollment score at approximately the Minnesota average, and those in schools with more than 75\% minority enrollment are considerably below the others, again at about
the achievement level of the Ukraine, though above Iran.
$8^{\text {th }}$ grade teachers in schools with more than 75% minority enrollment report spending about 35\% of their time on algebra, less than the 47% of the average $8^{\text {th }}$ grade Minnesota teacher. (Figure 4)

Grade 8 Teaching Time in Algebra and Mean Mathematics Score by Percentage of Minority Student Enrollment in School

© 2008 Center for Research in Mathematics and Science Education, Michigan State University
Figure 4

SOCIO-ECONOMIC STATUS

When students are disaggregated by SocioEconomic Status (SES), qualification for Free or Reduced price Lunch (FRL) is used as a marker, since qualification is based on poverty guidelines.

Looking at $4^{\text {th }}$ grade student overall scores, Minnesota students in schools where less than 25% of the students qualify for FRL perform the highest, above the overall average. Students in schools with between 25
and 50\% FRL perform at about the Minnesota average, while students in schools with between 50 and 75\% FRL perform below the state average.

Schools where more than 75% of students qualify for FRL perform well below the Minnesota average. In all cases, Minnesota students perform above the US average for the group. (Figure 5)

Grade 4 Mathematics Means in MN and the USA by Percentage of Students in School Eligible for Free or Reduced Lunch

 © 2008 Centar for Research in Mathematics and Sclence Education, Michigan State University

Figure 5

At the $8^{\text {th }}$ grade, the pattern is somewhat different. Students in schools with less than 10% FRL perform just slightly above the Minnesota average, and below the US average. For those in schools with 10-25\% FRL, Minnesota students perform above their peers in more affluent schools, above the Minnesota average, and nearly as well as the US average.

Students in schools with between 25 and 75% FRL perform at approximately the Minnesota average and above the US average. Students in high poverty schools, those with more than 75\% FRL, perform well below the Minnesota average, and below the US average for students in similar schools. (Figure 6)

For $4^{\text {th }}$ grade, a similar pattern is evidenced when looking at the number strand. There is a steady decrease in performance on TIMSS as the proportion of students eligible for FRL increases. (Figure 7)

At the $8^{\text {th }}$ grade, the results for the algebra strand exhibit a different pattern. The Minnesota average is about 525, and students in schools with less than 75\% FRL all hover around that score, ranging from about 515 to about 540 . However, students in schools with more than 75% FRL average about 450 in algebra, putting them far behind their peers. Their teachers also report spending less time on algebra than their counterparts in other schools. (Figure 8)

Grade 8 Mathematics Means in MN and
the USA by Percentage of Students in School Eligible for Free or Reduced Lunch

[^0]Figure 6

Grade 4 Mathematics Means in MN and the USA by Percentage of Students in School Eligible for Free or Reduced Lunch

Figure 7

Grade 8 Teaching Time in Algebra and Mean Mathematics Score by Percentage of Students in School Eligible for Free or Reduced Lunch

Figure 8

Looking at substrand data for $4^{\text {th }}$ grade over SES gives a picture similar to other data for $4^{\text {th }}$ grade. There is a decline in performance as the percent of students eligible for FRL increases, For Whole Number Operations,
scores range from about 63% correct for students in schools with less than 25\% FRL to about 40% for schools with more than 75% FRL. (Figure 9).

Figure 9

Grade 4 Common Fractions: Average Percent Correct by SES

Figure 10

Grade 4 Decimal Fractions: Average Percent Correct by SES

Figure 11

For the Common Fraction substrand at grade 4, students in schools with less than 10% FRL answered more than 80% of the items correctly, while students in schools with more than 75\% FRL answered less than 50\% correctly. (Figure 10)

On Decimal Fractions, correct responses ranged from almost 80% correct for students in schools with less than 10% FRL to less than
50% for schools with more than 75% FRL. (Figure 11)

On the Measurement Units substrand at grade 4 , there is a similar decrease, with students in schools with less than 10% FRL answering about 70\% of items correctly, while students in schools with more than 75\% FRL answer less than 40% correctly. (Figure 12)

Grade 4 Measurement Units: Average Percent Correct by SES

Figure 12

When we consider total instructional time at grade 4, the picture that emerges is somewhat different. Teachers in schools with more than 75% FRL spend the largest amount of time on mathematics, a total of about 225 hours per year, or 75-90 minutes per day.

On the other hand, teachers in schools with less than 10% FRL, and those in schools with between 50 and 75% FRL spend slightly more than one hour per day on mathematics. Teachers in schools with between 10 and 50% FRL report spending about 45 minutes per day on mathematics instruction. (Figure 13)

Grade 4 Yearly Total Mathematics Instructional Time by SES

Figure 13

Grade 4 Mathematics Mean Teaching Emphasis

Figure 14

At $4^{\text {th }}$ grade there are also differences in teacher emphasis across SES. Teachers in the highest SES schools spend more time on number and geometry than teachers in the lowest SES schools. Teachers in the highest SES schools spend no time on the "other" category; teachers in the lowest SES schools spend about 5% of their time on "other". (Figure 14)

The variation between them is the difference between 62% for the highest SES schools on number, and 56% for the lowest. This amounts to a difference of more than 2 weeks of instruction. For geometry, the differences are about 5\%, so the high SES schools have about 2 weeks more of geometry instruction. The amount of time the low SES schools spend on "other" also translates into about 2 weeks. (Figure 15)

Mean Percent of Grade 4 Mathematics Teaching Time

Number

62

Geometry

Other

19 ~ 2 Weeks
56
> 2 Weeks
~ 2 Weeks

Figure 15

At the $8^{\text {th }}$ grade level, the data on substrands gives a picture similar to that at $4^{\text {th }}$ grade, but is often more dramatic. For example, on the Common Fractions substrand, there is a 5% decline between the scores of students in schools with less than 10% FRL and schools in the 50 to 75% FRL range. However, the drop from scores of students in the 50 to 75\% FRL is about 20\%. (Figure 16)

For Congruence and Similarity, the decline from 1 to 75% is 4%, while the drop from 50 to 75% to more than 75% FRL is about 12%. (Figure 17)

For Proportion Concepts, there is a 2\% drop from the schools with less than 10\% FRL to those between 50 and 75%, but from the
latter to students in schools with more than 75% FRL there is a 20% drop. (Figure 18)

For Proportion Problems, there is a 16% drop from the schools with less than 10% FRL to those between 50 and 75%, but from the latter to students in schools with more than 75% FRL there is a 22% drop. (Figure 19)

For Functions, the drop from schools with less than 10% FRL to those with between 50 and 75% FRL is about 7 points, while the drop from there to students in schools with more than 75% FRL is about 19\%. (Figure 20)

And for Equations, the corresponding numbers are 6% and 20\%. (Figure 21)

In other words, students in schools with less than 75\% FRL do not perform much differently from each other, though there is slight drop in achievement for students as the
percentage of poor students increases.
However, students in schools with more than 75\% FRL perform substantially below those in schools with less than 75\% FRL.

Figure 16

Grade 8 Congruence and Similarity: Average Percent Correct by SES

Figure 17
Grade 8 Proportionality Concepts: Average Percent Correct by gFs

Figure 18

Figure 19

Figure 20

Figure 21

Looking at total time in mathematics across SES groups at grade 8, we see a direct relationship between the percent of students in poverty and time spent on mathematics. That is, the lower the proportion of low SES students in a school, the less time they spend on mathematics.

Students in schools with less than 10\% FRL spend about 50 minutes per day in mathematics, the least amount of time for any group. Students in other schools vary
between an average of 50 and 60 minutes, with the most time occurring at schools with between 50 and 75\% FRL. (Figure 22)

There are also discrepancies in teacher emphasis at Grade 8. Looking at the key strands of Algebra, Geometry and Number, we find that students in the highest SES schools spend about 4 weeks more per year in Algebra, 2 weeks more on Geometry, and 6 weeks less on Number. (Figure 23, 24)

Grade 4 Yearly Total Mathematics Instructional Time by SIS

Figure 22

Figure 23

Mean Percent of Grade 4 Mathematics Teaching Time

Topic
Highest SES
Lowest SES
Difference

Number

Geometry

Other
0
24
19 ~ 2 Weeks

5 ~ 2 Weeks
Figure 24

Minnesota students continue to perform well on NAEP compared to students in most other states, scoring in the top tier of states for both $4^{\text {th }}$ and $8^{\text {th }}$ grades. For the 2009 NAEP administration for mathematics, at grade 4 , about 42% of Minnesota students are proficient, and about 11% are advanced.

At grade 8, about 37\% are proficient while about 13% are advanced. On NAEP, as on TIMSS 2007, Massachusetts's students outperform Minnesota students at both grades 4 and 8. (Figures 25, 26)

2009 NAEP Grade 4 Mathematics

Figure 25

2009 NAEP Grade 8 Mathematics

Figure 26

CONTENT - SUB STRANDS

TIMSS test items were coded into broad categories of mathematics topics. For 4th grade there were 14 categories for mathematics and for 8th grade there were 21 categories the same categories were used in the 1995 analysis.

Student performance for Minnesota and the other countries/benchmarking participants was calculated for each of the categories and statistical tests were conducted to determine Minnesota students' performance relative to the students in other participating countries. The countries included in the comparisons are ones that participated in both 1995 and 2007.

Displays were constructed for categories that contained four or more items. Student performance is represented in terms of percentage of items correct in each category. At grade 4, Minnesota students only scored significantly lower than students in three countries-Hong Kong, Singapore and Japan. Minnesota students scored significantly lower than students in:

- Hong Kong on all twelve broad mathematics categories displayed.
- Singapore on ten broad mathematics categories.
- Japan on four broad mathematics categories

Minnesota students scored significantly higher than the US students in six broad categories of mathematics-Common and Decimal Fractions; Measurement Units; Perimeter, Area and Volume; Geometry: Positions and Shapes; and Symmetry, Congruence and Similarity. Although

Minnesota students scored higher than the US students in the other six broad categories, the differences were not statistically significant. (Figure 27 - Display 1)

At grade 8 Minnesota students scored significantly lower than students in seven countries or benchmark
participants-Hong Kong, Singapore, Rep. of Korea, Japan, England, the Russian Federation and Quebec. Minnesota students scored significantly lower than students in:

- Rep. of Korea on fifteen broad mathematics categories.
- Singapore on fourteen broad mathematics categories.
- Hong Kong on twelve broad mathematics categories.
- Japan on nine broad mathematics categories.

Minnesota students scored significantly higher than the US students in eight broad categories of mathematics-Decimal Fractions and Percents, Relations of Fractions, 2-D and 3-D Geometry, Perimeter, Area and Volume, Data Representation and Uncertainty-Probability.

Although Minnesota students scored higher than the US students in all other broad categories, the differences were not statistically significant. (Figure 28 Display 3, two parts)

Meaning of Whole Numbers	
HONG KONG SAR	80
JAPAN	77
SINGAPORE	74
NETHERLANDS	71
MINNESOTA, US	70
ENGLAND	69
LATVIA	68
QUEBEC, CANADA	67
HUNGARY	66
UNITED STATES	66
AUSTRIA	64
ALBERTA, CANADA	62
AUSTRALIA	62
ONTARIO, CANADA	62
SCOTLAND	60
CZECH REPUBLIC	60
THALY	59
NEW ZEALAND	57
SLOVENIA	56
International Average	56
NORWAY	53
IRAN, ISLAMIC REP. OF	39
KUWAIT	37

Geomatry: Position \& Shapas	
HONG KONG SAR	78
	71
SINGAPORE	70
JAPAN	67
MINNESOTA, US	64
ENGLAND	61
AUSTRAUA	61
LATVIA	61
QUEBEC, CANADA	60
ONTARIO, CANADA	59
UNITED STATES	57
NETHERLANDS	57
SLOVENIA	56
AUSTRIA	55
HUNGARY	55
ALBERTA, CANADA	54
TTALY	52
SCOTLAND	51
NEW ZEALAND	50
CZECH REPUBLIC	59
NORWAY	49
Intemational Average	49
IRAN, ISLAMIC REP. OF	37
KUWAIT	20

Whole Number Operations	
HONG KONG SAR	75
SINGAPORE	74
JAPAN	60
LATVIA	60
MINNESOTA, US	56
NETHERLANDS	55
HUNGARY	53
ENGLAND	52
UNITED STATES	51
AUSTRIA	48
QUEBEC, CANADA	48
CZECH REPUBLIC	47
SLOVENIA	47
TTALY	47
International Average	44
AUSTRALA	43
ONTARIO, CANADA	42
ALBERTA, CANADA	42
SCOTLAND	40
NEW ZEALAND	38
NORWAY	36
IRAN, ISLAMIC REP. OF	27
KUWAIT	17

Common Fractions		Decimal Fractions	
SINGAPORE	76	SINGAPORE	83
HONG KONG SAR	75	HONG KONG SAR	73
MINNESOTA, US	68	MINNESOTA, US	65
ENGLAND	62	ENGLAND	57
NETHERLANDS	60	UNITED STATES	57
JAPAN	60	JAPAN	56
UNITED STATES	59	NETHERLANDS	53
Quebec, canada	57	italy	50
AUSTRALIA	55	Latvia	49
LATVIA	52	Quebec, CANADA	44
NEW ZEALAND	50	AUSTRALIA	43
ONTARIO, CANADA	50	NEW ZEALAND	40
ALBERTA, CANADA	49	International Average	38
SCOTLAND	49	ONTARIO, CANADA	35
italy	47	ALBERTA, CANADA	34
HUNGARY	44	AUSTRIA	34
International Average	42	HUNGARY	34
slovenia	41	scotland	33
aUstria	39	NORWAY	29
norway	38	SLovenia	25
CZECH REPUBLIC	27	CZECH REPUBLIC	20
IRAN, ISLAMIC REP. OF	24	IRAN, ISLAMIC REP. OF	16
KUWAIT	19	Kuwart	13

Measurement Units	
HONG KONG SAR	74
SINGAPORE	69
JAPAN	68
NETHERLANDS	67
LATVIA	66
ENGLAND	62
MINNESOTA, US	59
CZECH REPUBLIC	57
HUNGARY	57
AUSTRIA	54
AUSTRALA	51
SLOVENIA	50
SCOTLAND	49
UNITED STATES	49
NEW ZEALAND	49
ALBERTA, CANADA	49
QUEBEC, CANADA	49
ONTARIO, CANADA	46
International Average	45
TALY	44
NORWAY	23
IRAN, ISLAMIC REP. OF	14
KUWAIT	

PerImater, Area \& Volume	
HONG KONG SAR	78
SINGAPORE	73
JAPAN	65
MINNESOTA, US	63
LATVIA	62
NETHERLANDS	61
AUSTRALIA	55
ENGLAND	54
AUSTRIA	53
QUEBEC, CANADA	53
UNITED STATES	52
ONTARIO, CANADA	50
HUNGARY	48
ALBERTA, CANADA	47
International Average	46
TTALY	44
CZECH REPUBLIC	43
SLOVENIA	42
NORWAY	40
SCOTLAND	40
NEW ZEALAND	38
IRAN, ISLAMIC REP. OF	30
KUWAIT	21

 simliarty	
HONG KONG SAR	83
SINGAPORE	81
ENGLAND	73
MINNESOTA, US	72
ONTARIO, CANADA	67
JAPAN	65
AUSTRALIA	65
UNITED STATES	64
SLOVENIA	62
SCOTLAND	61
TTALY	60
NEW ZEALAND	59
HUNGARY	58
NETHERLANDS	57
ALBERTA, CANADA	57
LATVIA	56
QUEBEC, CANADA	56
AUSTRIA	52
International Average	49
CZECH REPUBLIC	48
NORWAY	47
IRAN, IILAMIC REP. OF	37
KUWAIT	18

Proportionality		Patterns, Relations, \& Functions	
HONG KONG SAR	75	SINGAPORE	71
SINGAPORE	69	HONG KONG SAR	71
JAPAN	64	JAPAN	65
LATVIA	59	MINNESOTA, US	62
NETHERLANDS	57	ENGLAND	59
MINNESOTA, US	56	LATVIA	59
ENGLAND	55	united states	57
ONTARIO, CANADA	54	NETHERLANDS	56
UNITED StATES	52	HUNGARY	55
AUSTRALIA	52	ONTARIO, CANADA	53
ALBERTA, CANADA	48	italy	52
Quebec, Canada	47	AUSTRALIA	51
HUNGARY	46	ALBERTA, CANADA	51
slovenia	45	Quebec, Canada	51
Italy	44	NEW ZEALAND	48
NEW ZEALAND	44	AUSTRIA	48
SCOTLAND	42	Slovenia	47
International Average	42	SCOTLAND	46
CZECH REPUBUC	40	CZECH REPUBLIC	46
austria	39	International Average	46
norway	37	norway	42
IRAN, ISLAMIC REP. OF	27	IRAN, ISLAMIC REP. OF	26
KUWAIT	14	Kuwart	17

Equations \& Formulas		Data Representation, Probability 8 statistics	
HONG KONG SAR	73	HONG KONG SAR	85
SINGAPORE	69	SINGAPORE	83
JAPAN	68	JAPAN	82
MINNESOTA, US	62	MINNESOTA, US	77
HUNGARY	59	ENGLAND	75
UNITED STATES	58	UNITED STATES	74
Latvia	57	ONTARIO, CANADA	74
ENGLAND	56	NETHERLANDS	73
Traly	53	alberta, Canada	72
NETHERLANDS	51	latvia	71
AUSTRALIA	48	AUSTRALIA	70
Quebec, canada	47	quebec, canada	69
ONTARIO, CANADA	45	SCOTLAND	66
Alberta canada	45	SLOVENIA	65
CZECH REPUBLIC	46	NEW ZEALAND	65
International Average	45	AUSTRIA	63
SLOVENIA	45	rtaly	62
AUSTRIA	45	HUNGARY	61
SCOTLAND	44	CZECH REPUBLIC	58
NEW ZEALAND	44	NORWAY	57
NORWAY	39	International Average	56
IRAN, ISLAMIC REP. OF	32	IRAN, ISLAMIC REP. OF	34
KUWAIT	21	KUWAIT	22

Signincantily higher than MN
Not Statistically Different from MN Signinicantly lower than MN

Whole Numbers	
SINGAPORE	72
KOREA REP. OF	71
HONG KONG SAR	68
JAPAN	66
MINNESOTA, US	88
ONTARIO, CANADA	62
quebec, canada	60
united states	68
England	58
CZECH REPUBLIC	57
HUNGARY	57
anctrala	56
slovenia	55
sweden	55
russinn federation	54
SCOTLAND	53
norway	51
Lithuania	51
italy	50
thallano	43
IBRAEL	43
bulgaria	42
cyprus	42
international Aversge	41
ROMANIA	38
IRAN, İLAMIC REP. OF	29
colomela	27
Kuwart	20
Moscursment Units	
SINGAPORE	73
KOREA REP. OF	69
HONG KONG SAR	67
Japan	67
quebec, canada	58
england	57
minnesota, Us	67
slovenia	53
Czech republic	53
HUNGARY	53
sweden	53
scotland	52
UNITED states	51
Ontario, canada	51
anstrala	49
RUSSIN FEDERATION	49
Lithunnia	48
norway	45
cyprus	40
italy	40
thailano	40
international Aversge	38
ISRAEL	38
bulgaria	37
ROMANIA	34
colomeia	25
iran, islamic rep. of	24
KUWAIT	22

Common Fraotions	
SINGAPORE	72
KOREA REP. OF	68
HONG KONG SAR	6
JAPAN	60
quebec, canada	49
russian federation	46
HUNGARY	46
ONTARIO, CANADA	45
MINNESOTA, U8	46
Czech republic	
italy	
sweoen	
england	
LITHUANIA	
slovenia	
Australla 40	
UNITED states	
cyprus	
ISRAEL 37	
OCOTLAND 36	
NORWAY 36	
International Aversge	
ROMANIA	
bulgazia	
thalland	
IRAN, IBLAMIC REP. OFCOLOMEIA	
Perimeter, Ares \& Volume	
SINGAPORE 70	
HONG KONG 3AR 66	
KOREA, REP, OF	
JAPAN 60	
Quebec, canada 48	
minnesota, Us	
Lithuania	
ONTARIO, CANADA 46	
England	
HUNGARY 44	
RUSBIAN FEDERATION 44	
ITALY 43	
ROMANIA 42	
CZECH REPUBLIC 41	
UNITED STATES 40	
slovenia	
australa 38	
SWEDEN 38	
cyprus	
bulgnela 37	
scotland	
intemasonal Aversge	
norway	
İRAEL	
thaland	
IRAN, IBLAMIC REP. OF 25 KUWAIT 19	
colombia	18

Display 3: Grade 8		athematics Topics	
Deolmal Fraotiont \& Pero		Ralations of Fraotions	
SINGMFORE	78	KOREA REP. OF	79
KOREA, REP, OF	72	IINGAPORE	
HONG KONG SAR	71	HONG KONG SAR	74
JAPAN	69	UAPAN	67
quebec, canada	69	MinNesota, us	64
minnesota, us	${ }_{87}$	quebec, canada	59
sweden	65	ONTARIO, CANADA	57
Ontario, canada	64	UNITED STATES	
england	62	rusaine feiemation	55
Lithuania	62	HUNGARY	54
HUNGARY	62	aweden	53
CZECH REPUBUIC	62	Lithuania	52
UNITED STATES	80	CZECH REPUBLIC	51
australia	58	anstrala	50
russian federation	57	england	48
ocotland	57	slovenia	48
norway	57	norway	45
slovenia	57	israml	45
ITALY	52	bulgaria	45
ispat	48	Intemational Averspe	44
bulgaria	48	acotland	43
CYprus	47	italy	43
Intermasonal Aversge	46	cyprus	42
romana	45	romania	42
Thalland	40	thalland	35
IRNN, ISLAMIC REP. OF	30	IRAN, IBLAMIC REP. OF	31
Colomata	24	KUWIAT	25
KUwAIT	21	colombia	19
2-D Geometry		Polygone a cliroles	
KOREA, REP. OF	74	KOREA REP. OF	65
JAFAN	72	IINGAPORE	53
HONG KONG SAR	67	HONG KONG SAR	55
SINGAPORE	66	JAPAN	65
Quebec, canada	52	Ruisinn feieration	48
olovenia	49	quebec, canada	48
england	48	HUNGARY	47
HUNGARY	48	england	45
russian federation	48	Lithuania	4
minnesota, us	46	Italy	43
Czech repubuic	45	CZECH REPUELIC	42
Ontario, canada	44	slovenia	42
Lithuania	43	ONTARIO, CANADA	42
bulgara	43	minnesota, us	42
scotland	41	romania	41
australia	40	bulgaria	40
UNTEE states	39	aweden	40
sweden	39	cyprus	39
italy	39	Intemational Averspe	38
israel	38	acotland	${ }^{37}$
romania	37	İRAEL	37
thaland	37	australa	37
cyprus	37	United states	37
norway	36	thailand	35
IRAN, ISLAMIC REP. OF	32	norway	35
Kuwait	27	IRAN, IBLAMIC REP. OF	30
COLOMEIA	20	KUwant	23
Intermasonal Aversge	39.	COLOMbia	20

Estimating Quanitity 8 81zo		Hounding	
KOREA, REP. OF	67	SINGAPORE	63
MinNesota, us	66	HONG KONG SAR	62
IAPANIINGAPORE	64	KOREA, REP. OF	55
	63	MINNESOTA, U8	50
united states	80	JAPAN	49
HUNGARY	60	UNITED states	48
slovenia	60	quebec, canada	42
england	59	ONTARIO, CANADA	42
ONTARIO, CANADA	59	hungary	40
HONG KONG SAR	58	sweden	40
Australa	57	england	39
QUEBEC, CANADA	57	LITHUANIA	38
aweden	54	CzECH REPUBUC	38
acotland	54	russin federation	${ }^{37}$
CzECH REPUBLIC	54	norway	35
Italy	51	australia	35
LITHUANIA	51	slovenia	34
RUSSIAN FEDEEATION	51	bulgara	33
norway	51	scotland	31
cyprus	41	Intemasonal Aversge	29
intemational Averape	40	Italy	28
thailand	40	ISRaEL	28
bulgaria	40	thaland	28
ROMANIA	40	ROMANLA	27
IBraEl	39	cyprus	27
colomeia	35	IRAN, ISLAMIC REP. OF	15
KUWMAT	25	colomeia	9
IRAN, ISLAMIC REP. OF	24	KUWAAT	9
3-D Geometry \& Tranctor		Proportionality Conoeptr	
Japan	73	IINGAPORE	80
KOREA REP. OF	72	KOREA, REP, OF	76
IINGAPORE	71	HONG KONG SAR	65
HONG KONG SAR	71	JAPAN	62
England	65	russinn federation	48
ONTARIO, CANADA	63	ontario, canada	47
quebec, canada	61	minnesota, us	47
HUNGARY	60	england	45
Lithunnia	60	QuEbec, canada	45
australa	59	hungary	45
minnesota, us	68	Czech republic	44
acotland	58	UNITED states	44
CZECH REPUBLIC	55	bulgara	42
alovenia	55	australa	41
UNITED states	53	acotland	40
RUSSLMN FEDEEATION	53	cyprus	39
italy	49	LITHUANIA	38
aweden	47	Intemasonal Aversge	37
norway	46	THALAND	37
bulgaria	42	italy	36
intemational Averape	42	Romania	36
Cyprus	40	slovenia	33
Romenia	40	ISRAEL	33
thailand	39	norway	31
İRAEL	35	IRAN, ISLAMIC REP, OF	28
IRAN, ISLAMIC REP. OF	33	kuwart	28
KUWANT	27	sweden	25
COLOMEIA	26	COLOMEIA	20

Display 3: Grade 8 Mathematics Topics

Proportionallity Problems	
KOREA REP. OF	69
SINGAPORE	69
HONG KONG SAR	63
JAPAN	54
Quebec, cankan	50
ENGLAND	49
minnesota, us	48
RUSSIAN FEDERATION	44
ONTARIO, CANADA	42
HUNGARY	42
LITHUANIA	42
sweden	41
UNITED states	41
australla	41
slovenia	40
ROMANIA	39
3COTLAND	38
CZECH REPUBLIC	38
cyprus	38
IJRAEL	36
bulgaria	35
International Average	34
NORWAY	32
thalland	30
italy	30
IRAN, IILAMIC REP. OF	24
colomala	20
KUWATT	16

Patterne, Relations, \& Funotions	Equatione \& Formulas	Data Reprecentation A Analycic
KOREA, REP. OF 66	KOREA, REP, OF 70	KOREA, REP. OF 72
SINGAPORE 64	SINGAPORE 68	aingapore 72
JAPAN 62	HONG KONG SAR 65	JAPAN 71
HONG KONG SAR 57	JAPAN 61	MINNESOTA, US 67
MINNESOTA, US 48	Russian federation 51	HONG KONG 3AR 65
QUEEEC, CANADA 46	MINNESOTA, US 49	ENGLAND 62
HUNGARY 45	QUEBEC, CANADA 46	ONTARIO, CANADA 62
ENGLAND 45	HUNGARY 46	QUEEEC, CANADA 60
ONTARIO, CANADA 44	UNITED OTATES 44	UNITED STATES 68
aLovenia 41	ROMANIA 43	HUNGARY 58
RUSGIAN FEDERATION 41	ENGLAND 42	SWEDEN 58
UNITED STATES 41	LITHUANIA 42	ITHUANIA 57
Australia 41	Bulgaria 42	AUSTRALIA 56
3COTLAND 39	SLOVENIA 41	alovenia 55
CZECH REPUBLIC 39	ONTARIO, CANADA 41	aCOTLAND 54
LITHUANIA 36	CZECH REPUBUC 39	CZECH REPUBLIC 54
Bulgaria 35	ISRAEL 39	NORWAY 52
3WEDEN 35	CYPRUS 38	RUSBIAN FEDERATION 48
ITALY 34	Italy 36	ITALY 48
ROMANIA 34	AUSTRALIA 36	ISRAEL 44
ISRAEL 34	Internatonal Aversge 36	CYprus 41
CYprus 33	OCOTLAND 35	International Average 41
International Average $\quad 32$	SWEDEN 33	THAILAND 40
NORWAY 32	THALAND 29	EULGARIA 37
Thalland 30	NORWAY 26	ROMANIA 35
IRAN, IILAMIC REP, OF 24	IRAN, ISLAMIC REP. OF 25	IRAN, ISLAMIC REP. OF 28
COLOMAIA 20	COLOMEIA 20	COLOMEIA 28
KUWAT 14	Kuwat 18	KUWAT 22

Unoertainty \& Probability	
KOREA REP. OF	87
JAPAN	76
MINNESOTA, US	76
aingapore	72
england	72
ONTAFEO, CANADA	71
quebec, canada	71
HONG KONG SAR	69
Australa	67
UNITED STATEs	87
LTTHUANIA	66
SWEDEN	62
acotland	60
norway	58
HUNGARY	58
CZECH REPUBLIC	57
slovenia	57
italy	57
RUSSIAN FEDERATION	55
CYprus	52
IIRAEL	51
Intemational Average	47
Eulgaria	46
ROMANIA	43
thalland	42
IRAN, IBLAMIC REP. OF	39
colomela	32
KUWANT	26

Content - Curriculum, Standards and Textbooks

What are the characteristics of a coherent and focused curriculum? Can these characteristics be identified or measured? We believe that a coherent curriculum introduces and develops topics in a logical sequence.

Different topics 'fit' together as part of an integrated, systematic whole, both within a grade level and from grade to grade. Simple concepts are first introduced within simple topics. Topics are developed fully by gradually moving to more complex concepts. Once a topic has been fully developed, it is excluded from the curriculum and other, more complex topics are introduced.

A focused curriculum is one that intends a carefully selected and relatively small number of topics, especially in the early grades. The idea is that less is more, in that if fewer topics are included in the curriculum, the few can be addressed in greater depth. The concepts related to them can be developed completely so that students fully understand them. Such an approach facilitates the process of building a strong foundation in mathematics while advancing on to new and more complex topics in succeeding years of study.

One model of a coherent curriculum for mathematics is depicted in the display that follows. It is a matrix that depicts a composite of mathematics content areas of the top achieving countries (TAC) intended for grades one through eight according to results from the Third International Mathematics and Science Study (TIMSS), completed in 1995.

Thirty-two topics are identified in rows that are listed in the left column. The remaining columns identify the first eight grades. Our matrix has 256 cells (8×32). There are 99 shaded cells that identify the grades in which topics are included in the mathematics curricula in more than half of the TAC (four out of six countries).

Thus the shaded cells, representing topicgrade combinations, can be referred to as "coherence cells". The display lists topics in somewhat the same sequence suggested by results from the TAC curricular studies. The sequence of the major topics can be thought of as in a hierarchical structure that concurrently establishes a logical sequence for introducing these topics across the grades. (Figure 29)

By overlaying the curriculum intended according to the Minnesota standards on the appropriate silhouetted region, our model of a coherent and focused curriculum, we have a sense for the extent of agreement with our models. Whether examining the mathematics or science matrix, the cells within the matrix fall into three groups:

1) Cells that match the shaded area, displaying agreement with the ideal scenario of coherence as defined by our model.
2) Cells that are located in the grid in grades before those defined by the shaded region - these cells indicate topics that are covered earlier than that suggested by the ideal scenario of our model.
3) Cells that are located in the grid in grades after those defined by the shaded region - these cells indicate that topics are introduced or covered beyond the time that is recommended by our model.

Mathematics Topics Intended at Each Grade in the state of Minnesota

	Grade							
Topic	1	2	3	4	5	6	7	8
Whole Number: Meaning	-	-	-	-				
Whole Number: Operations	\bullet	\bullet	\bullet	\bullet	\bullet			
Measurement Units	\bullet	\bullet	-	-	-	\bullet	\bullet	\bullet
Common Fractions	\bullet	\bullet	-	-	-	\bullet	\bullet	
Equations \& Formulas			\bullet	-	-	\bullet	-	-
Data Representation \& Analysis	-	\bullet	-	-	-	\bullet	\bullet	\bullet
2-D Geometry: Basics			-	-	-	\bullet	\bullet	
2-D Geometry: Polygons \& Circles	\bullet	\bullet	-	-	-	\bullet	\bullet	\bullet
Measurement: Perimeter, Area \& Volume			\bullet	-	-	\bullet	\bullet	\bullet
Rounding \& Significant Figures				-	-	\bullet		
Estimating Computations		-		-	-	\bullet	\bullet	\bullet
Whole Numbers: Properties of Operations		\bullet	-	-		\bullet	\bullet	\bullet
Estimating Quantity \& Size								
Decimal Fractions		\bullet	-	-	\bullet	\bullet		
Relation of Common \& Decimal Fractions							\bullet	
Properties of Common \& Decimal Fractions								
Percentages					\bullet	\bullet	\bullet	\bullet
Proportionality Concepts								
Proportionality Problems							\bullet	-
2-D Geometry: Coordinate Geometry						\bullet	\bullet	\bullet
Geometry: Transformations	\bullet	\bullet	-		-	-	\bullet	\bullet
Negative Numbers, Integers, \& Their Properties					\bullet	\bullet		
Number Theory	\bullet	\bullet				\bullet		
Exponents, Roots \& Radicals							\bullet	\bullet
Exponents \& Orders of Magnitude							\bullet	\bullet
Measurement: Estimation \& Errors	\bullet	-						
Constructions Using Straightedge \& Compass						\bullet		
3-D Geometry	\bullet	\bullet	-	\bullet	-	\bullet	\bullet	\bullet
Geometry: Congruence \& Similarity				\bullet				
Rational Numbers \& Their Properties						\bullet	\bullet	-
Patterns, Relations \& Functions		\bullet	\bullet	-	\bullet		\bullet	\bullet
Proportionality: Slope \& Trigonometry							\bullet	

Figure 29

Observations for mathematics follow: Across the first four grades, Minnesota intended to cover most of the same topics that were intended by the TAC. All topics that were intended by the TAC were intended in the Minnesota standards in
grades one through three. Only two topics were not intended in fourth grade that were intended by the TAC: Estimating Quantity and Size; Relation of Common and Decimal Fractions.

The matrix identifies thirty-nine cases across grades one through seven where Minnesota intended to cover topics earlier than the grade first suggested by the coherence model. Several topics were intended not only earlier but also in two or more grades prior to what the coherence model suggests. The topics most frequently covered early were: Common and Decimal Fractions; Data Representation \& Analysis; 2-D Geometry, Polygons \& Circles; Whole Numbers, Properties of Operations;
Transformations; 3-D Geometry; and Patterns, Relations \& Functions.

The number of topics intended to be covered early in grades one through three is of particular concern. When teachers must dedicate classroom time teaching topics before their time as suggested by the coherence model they have less time to develop the concepts related to the topics that are considered more essential at the early grades: Whole Numbers, Meaning and Operations; and Measurement Units.

This is particularly extreme in grade two. Out of the thirty-two topics that are considered in the matrix, Minnesota intended to cover eleven more topics than the three suggested by the TAC composite.

Moving across the matrix to the higher grades, there are several topics in each of grades five through eight that were intended by the TAC but not the Minnesota standards. These topics fall into the three categories: those that are
not covered in any of the eight grades (three topics); those that are covered in earlier grades; and topics that were intended in grades later than suggested by the model.

One of the topics never intended, Estimating Quantity \& Size, was mentioned above as part of the discussion related to grade four. The other two topics that were not intended in grades one through eight are: Properties of Common \& Decimal Fractions; and Proportionality Concepts.

Other topics of particular concern that were not intended according to the suggested model are: Relation of Common \& /Decimal Fractions; Proportionality Problems; Coordinate Geometry; Proportionality, Slope \& Trigonometry. These topics are important to laying a foundation for more complex content that will be introduced in later high school courses.

Taken together these gaps in intended topic coverage are noteworthy because concepts associated with these topics must be developed fully in grades five through eight to ensure that students have the foundation that they need to understand even more complex content related to algebra, geometry, trigonometry and beyond.

Figures 29a and 29b show how the mathematics topic focus in MN compares to the rest of the US in 2007 and how it has changed from 1995.

Comparing MN and the US: Grade 4 Mathematics

Topic	1995	2007	
Meaning of Whole Numbers			
Whole Number Operations			
Common Fractions			MN>US
Decimal Fractions			MN=us
Measurement Units			MN<US
Perimeter, Area \& Volume			
Geometry: Position \& Shapes			
Symmetry, Congruence \& Similarity			
Proportionality			
Patterns, Relations, \& Functions			
Equations \& Formulas			
Data Representation, Probability \& Statistics			

Figure 29a

Comparing MN and the US: Grade 8 Mathematics

Topic	1995	2007	
Whole Numbers			
Common Fractions			
Decimal Fractions \& Percents			
Relations of Fractions			
Estimating Quantity \& Size			Mn>us
Rounding			MN=us
Measurement Units			MN<US
Perimeter, Area \& Volume			
2-D Geometry			
Polygons \& Circles			
3-D Geometry \& Transformations			
Proportionality Concepts			
Proportionality Problems			
Patterns, Relations, \& Functions			
Equations \& Formulas			
Data Representation \& Analysis			
Uncertainty \& Probability			

Figure 29b

MINNESOTA STUDENTS' PERFORMANCE IN BROAD AREAS OF SCIENCE: 2007 INTERNATIONAL COMPARISONS

TIMSS test items were coded into15 broad categories for Grade 4 science and 17 categories for grade 8 science, the same categories used in the 1995 analysis.

GRADE 4 SCIENCE

- Only students in Singapore scored significantly higher overall than Minnesota students.
- Singapore scored higher on seven of the broad science categories displayed.
- Japan on three broad science categories-Human Biology and Health; Energy and Physical Processes; and Physical and Chemical Changes.
- Netherlands on one broad science category-Human Biology and Health.
- MN students maintained their relatively high level of performance in science at a time when the requirements of No Child Left Behind led elementary schools to heavily emphasize reading and math instruction
- MN students scored significantly higher than the U.S. students in one area of science - Forces and motion.
- Although MN students scored higher than the US students in all but one other broad category, the differences were not statistically significant. (Figures 30 and 31)

Display 2: Grade 4 Science Topics										
Earth Features		Earth Processes		Earth in the Universe		Plants \& Animals		Organs \& Tissues		
MINNESOTA, US	70	ALBERTA, CANADA $\mathbf{7 0}$ JAPAN $\mathbf{7 0}$		LATVIA ENGLAND SINGAPORE	66	SINGAPORE 70		HUNGARY 63		
HONG KONG SAR UNITED STATES SINGAPORE	66			66	ITALY 63		TTALY 63			
	64	MINNESOTA, US	67		66	Minnesota, us	62		62	
	64	ONTARIO, CANADA	66		HONG KONG SAR	63	ALBERTA, CANADA	61	AUSTRIA	61
ALBERTA, CANADA	64	England	65	Mininesota, us	62	UNITED STATES	61	slovenia	60	
england	63	UNITED STATES	65	UNITED STATES	61	england	60	SINGAPORE	60	
JAPAN	63	traly	64	ALBERTA, CANADA	60	ONTARIO, CANADA	60	MINNESOTA, US	60	
AUSTRIA	62	HONG KONG SAR	64	australla	60	latvia	60	LATVIA	60	
AUSTRALIA	60	AUSTRIA	64	ONTARIO, CANADA	58	HUNGARY	60	ENGLAND	59	
ONTARIO, CANADA	60	aUstralla	64	aUstria	58	HONG KONG SAR	59	ONTARIO, CANADA	58	
netherlands	60	NETHERLANDS	63	slovenia	56	australia	59	United states	58	
Latvia	60	QUEBEC, CANADA	61	HUNGARY	56	NETHERLANDS	58	HONG KONG SAR	58	
rtaly	59	HUNGARY	60	NETHERLANDS	55	CZECH REPUBLIC	57	ALBERTA CANADA	58	
HUNGARY	58	SINGAPORE	60	norway	55	AUSTRIA	57	CZECH REPUBLIC	56	
scotland	57	CZECH REPUBLIC	60	NEW ZEALAND	55	JAPAN	56	Quebec, Canada	54	
NEW ZEALAND	57	NEW ZEALAND	59	QUEBEC, CANADA	55	Quebec, canada	55	australia	53	
slovenia	56	Latvia	58	italy	54	NEW ZEALAND	54	JAPAN	53	
NORWAY	54	SCOTLAND	58	SCOTLAND	54	slovenia	54	SCOTLAND	51	
QUEBEC, CANADA	53	slovenia	57	JAPAN	54	sCOtLAND	54	new zealand	50	
International Average	51	International Average	51	CZECH REPUBLIC	53	International Average	50	NORWAY	50	
CZECH REPUBLIC	50	norway	51	International Average	50	norway	50	International Average	49	
IRAN, ISLAMIC REP. OF	37	IRAN, ISLAMIC REP. OF	34	IRAN, ISLAMIC REP. OF	40	IRAN, ISLAMIC REP. OF	42	IRAN, ISLAMIC REP. OF	37	
Kuwart	30	kuwart	32	kuwait	27	Kuwart	33	Kuwart	28	
tunisia	20	TUNISIA	27	TUNISIA	23	TUNISIA	26	tunisia	24	
Life Processes \& Fun	on	Life Cycles \& Genetics		Interactions of Living Things		Human Biology and He		Matter		
SINGAPORE	82	SINGAPORE	62	Italy	71	JAPAN	65	SINGAPORE	72	
HONG KONG SAR	63	AUSTRIA	58	austria	70	SINGAPORE	64	HONG KONG SAR	67	
ONTARIO, CANADA	60	CZECH REPUBLIC	56	SINGAPORE	69	NETHERLANDS	63	JAPAN	65	
rtaly	59	HUNGARY	56	NETHERLANDS	69	HONG KONG SAR	61	Latvia	64	
united states	58	MINNESOTA, US	55	MINNESOTA, US	68	italy	61	MINNESOTA, US	61	
Alberta canada	57	Italy	55	HUNGARY	68	HUNGARY	60	ITALY	61	
ENGLAND	56	Latvia	54	Latvia	66	Quebec, CANADA	60	AUSTRIA	59	
MINNESOTA, US	55	alberta, canada	53	alberta, canada	66	Latvia	59	england	59	
JAPAN	55	AUSTRALIA	53	JAPAN	66	ALBERTA, CANADA	58	HUNGARY	59	
Latvia	50	JAPAN	52	AUSTRALIA	65	ONTARIO, CANADA	58	United states	59	
NETHERLANDS	49	ONTARIO, CANADA	52	HONG KONG SAR	65	MINNESOTA, US	57	slovenia	58	
australia	48	England	52	CZECH REPUBLC	65	ENGLAND	57	CzECH REPUBLIC	58	
HUNGARY	48	UNITED STATES	52	UNITED STATES	65	AUSTRIA	55	QUEBEC, CANADA	57	
slovenia	47	slovenia	51	ONTARIO, CANADA	64	UNITED STATES	55	ALBERTA, CANADA	57	
CZECH REPUBLIC	47	NETHERLANDS	50	ENGLAND	64	aUSTRALIA	54	ONTARIO, CANADA	56	
IRAN, ISLAMIC REP. OF	47	HONG KONG SAR	49	Slovenia	64	CZECH REPUBLIC	54	australla	55	
International Average	45	NEW ZEALAND	48	QUEBEC, CANADA	62	slovenia	53	NETHERLANDS	52	
AUSTRIA	44	Quebec, canada	48	NEW ZEALAND	59	NEW ZEALAND	53	scotland	52	
SCOTLAND	44	SCOTLAND	44	norway	57	norway	51	International Average	50	
new zealand	44	International Average	43	scotland	57	scotland	49	new zealand	50	
QUEBEC, CANADA	43	norway	42	International Average	55	International Average	48	NORWAY	48	
NORWAY	35	IRAN, ISLAMIC REP. OF	34	IRAN, ISLAMIC REP. OF	47	IRAN, ISLAMIC REP. OF	40	IRAN, ISLAMIC REP. OF	38	
kuwait	33	Kuwart	20	tunisia	31	TUNISIA	25	Kuwait	31	
tunisia	23.	TUNISIA	18	Kuwait	29	Kuwart	24	tunisia	29	

Figure 30

Grade 4 Science Topics									
Energy and Physical Processes		Physical \& Chemical Changes		Forces and Motion		Environmental \& Res Issues		Scientific Processes	
SINGAPORE	73	SINGAPORE	69	HONG KONG SAR	71	ALBERTA, CANADA	67	SINGAPORE	70
JAPAN	67	JAPAN	65	SINGAPORE	70	MINNESOTA, US	63	HONG KONG SAR	70
HONG KONG SAR	61	HONG KONG SAR	61	MINNESOTA, US	67	Quebec, CANADA	62	ENGLAND	69
MINNESOTA, US	58	latvia	60	ONTARIO, CANADA	64	SINGAPORE	62	MINNESOTA, US	67
Latvia	58	HUNGARY	58	ALBERTA, CANADA	63	HONG KONG SAR	61	Latvia	67
england	56	MINNESOTA, US	57	austria	63	ONTARIO, CANADA	61	UNited states	67
alberta canada	56	ENGLAND	57	australla	62	JAPAN	59	australia	67
united states	55	sloveria	56	latvia	62	australla	58	JAPAN	65
ONTARIO, CANADA	54	CZECH REPUBLIC	55	ENGLAND	62	italy	58	Alberta canada	64
HUNGARY	54	rtaly	55	UNITED STATES	61	england	58	netherlands	63
netherlands	54	alberta, canada	55	JAPAN	61	UNITED StATES	57	hungary	62
slovenia	54	UNITED STATES	55	Italy	61	NETHERLANDS	57	traly	61
traly	53	ontario, canada	53	netherlands	60	HUNGARY	57	quebec, canada	61
AUSTRIA	53	AUSTRIA	51	new zealand	60	AUSTRIA	55	ONTARIO, CANADA	61
australia	53	australla	51	HUNGARY	58	latvia	55	scotland	61
Czech republic	50	Quebec, canada	50	scotland	56	scotland	52	new zealand	60
new zealand	49	NETHERLANDS	49	International Average	54	slovenia	52	AUSTRIA	60
Quebec, Canada	48	International Average	46	slovenia	54	CZECH Republic	51	slovenia	58
scotland	48	new zealand	45	CZECH Repubuc	54	new zealand	51	Czech republic	57
International Average	47	SCOTLAND	44	NORWAY	53	International Average	45	International Average	56
NORWAY	42	NORWAY	40	Quebec, CANADA	52	IRAN, ISLAMIC REP. OF	42	NORWAY	54
IRAN, ISLAMIC REP. OF	38	IRAN, ISLAMIC REP. OF	35	IRAN, ISLAMIC REP. OF	45	norway	41	IRAN, ISLAMIC REP. OF	45
tunisia	28	Kuwart	26	Kuwait	42	Kuwart	22	Kuwart	37
kuwalt	26	tunisia	25	TUNISIA	39	TUNISIA	19	tunisla	35

Significantly higher than MN
Not Statistically Different from MN
Significantly lower than MN

Figure 31

Grade 8 Science

- Minnesota students scored significantly lower than students in five countries: China, Korea, Singapore, Hong Kong and Japan.
- Minnesota students scored significantly better than students from the other 44 participating countries.
- On specific categories of science, Minnesota students scored significantly lower than students in six other countries.
- Singapore and Japan scored higher on eight of the broad science categories displayed.
- Rep. of Korea scored higher on six of the broad science categories displayed.
- The Czech Republic scored higher on five of the broad science categories-Properties and Classification of Matter; Structure of Matter; Energy and Physical Processes; Physical Changes; and Forces and Motion.
- Hungary scored higher on four of the broad science categories- Properties and Classification of Matter; Structure of Matter; Energy and Physical Processes; and Physical Changes.
- The Russian Federation Scored higher on three of the broad science categories-Properties and Classification of Matter; Structure of Matter; and Physical Changes.
- Hong Kong scored higher on two of the broad science categories-Life Cycles and Genetics and Energy and Physical Processes.
- MN students scored significantly higher than the U.S. students in seven areas of science-Earth Features and Processes; Diversity and Structure of Living Things; Interaction of Living Things; Human Biology and Health; Environmental and Resource Issues and Scientific Processes.
- Although MN students scored higher than the US students in all but one of the other broad categories, the differences were not statistically significant.
(Figures 32 and 33)

intoraotione of Living Thinos	
IINGAPORE	5
KOREA REP, OF	6
minnesota, us	${ }^{2}$
hungery	60
slovenia	
IAPAN	
england	
ONTARIO, CANADA	
LITHUANIA	
CZECH REPUBLIC	
UNITED states	
hong kong sar	
australla	
RUSIAN FEDERATI SWEDEN	
aweden QUEBEC, CANAOA	
acotland	
norwar	
italy	
ISRAEL	
thailand	
international	
ROMANIA	
bulgneia	
IRAN, HELAMIC	
cyprus	37
colomeat	31
KUWANT	

Eartm Prooesces	
CZECH REPUBLIC	60
HoNG KONG ant	
IAPAN	
minnesota, us	
ruscian federation	
ONTARIO, CANADA	
Singapore	
quebec, canam	
UNITED STATES	
LITHUNNLA	
australia	
England	
$\begin{array}{ll} \text { ITALY } & 51 \\ \text { SWEOEN } & 51 \end{array}$	
SWEDEN KOREQ REP. OF	
$\begin{array}{ll}\text { HUNGMRY } & \text { S0 } \\ \text { NORwAY }\end{array}$	
thalland 46	
SCOTLAND 46	
IRAN, HELAMIC REP. O	
ISRAEL 40	
ROMANIA 39	
cyprus	
Kuwant	

Human Blotogy and Hoalth	
minnesota, us	70
KOREA REP, OF	69
CZECH REPUBLIC	66
england	66
hungary	65
IAPAN 65	
ONTARIO, CANADA	64
SINGMPORE 64	
QUEBEC, CANAOA 64	
sweden 63	
UNITED \&TATEs	
hong kong ane	
Rusian feomration sz	
australla 62	
ITALY 61	
norwar 59	
slovenia 58	
thaland 57	
LITHUANIA 56	
SCOTLAND 54	
ISRAEL 54	
ROMANIA 52	
bulgneia 51	
International cyprus	
IRAN, IBLAMIC REP. OF	48
colomela	43
KUW,ATT	38

Display 4: Grade 8 Science Topics

Earth in the Univarco		Diversily a structure of Luving Thinge	
OLOVENIA	63	Singapore	
CzECH Republic	61	KOREA REP, OF	
KOfen rep. of	60	minnesota, us	68
minnesota, us	e0	IAPAN	57
UNITED sTATES	68	HUNGARY	55
sweden	57	CZECH REPUBLIC	55
NORWAY	57	ONTAREO, CANADA	55
SINGMFORE	57	slovenia	55
england	56	UTTHUNNIA	55
RUSSIAN FEDERATIIN	ss	england	55
bulgatia	55	UnITED states	
italy	55	RUSSIAN FEDEEATION	
lithuania		Hong kong anr	
australia	53	AUSTRALA	
HONG KONG SAR	51	OWEDEN	48
QUEBEC, CANADA	sa	quebec, canada	48
ONTARIO, CAMADA	50	rtaly	47
HUNGMRY	49	THAILAND	44
thallano	49	ICOTLAND	43
IRAN, ISLAMIC REEP. OF	48	bulgaria	43
Javan	48	norway	42
Ocotland	46	insernational	41
internasona\|	45	Ispael	41
romania	39	nomania	38
ispael	38	Ifand izlamic repr. Of	35
Kunart	35	CYprus	34
crprus	35	colombia	34
COLOMEIA	34	KUWANT	

Propertioc a Clascilioation of Mattor	
SINGMFORE	53
KOREA, REP, OF	53
olovenia	51
JAFAN	sa
HUNGNRY	sa
CzECH REPUBLIC	49
RUSSIAN FEDERATION	48
englano	47
HONG KONG SAR	44
minnesota, us	41
Litmunnia	40
sweden	40
UnItED atates	40
australia	39
ONTARIO, CANADA	39
GUEEEC, CANADA	38
OCOTLAND	37
israml	37
bulgmata	36
internasonal	35
italy	34
norway	34
cyprus	34
thatlano	33
ROMANIA	33
IRAN, ISLAMIC REP. Of	32
Kunart	27
COLOMELA	24

struoture of Mattor	
slovenia	
IINGAPORE	
CZECH REPUBLIC	50
RUSGIAN FEOERATION	50
hungary	5
LITHUNNIA	54
bulgara	53
JAPAN	
ROMANIA	
IRAN ISLAMIC REP. OF UNITED \&TATES	
cyprue	
minnesota, us	
rtaly	
ITRAEL	
aweden	
invernational 43	
england az	
KOREA REP. OF	
GUEbec, canada	
кuvaialt	
Australa	
THALAND	
colombia	
norwar	
acotland	
TARIO, CANADA	

Lifo Prooecsec \& Frunotions	
IINGAPORE	68
KOREA REP, OF	63
IAPAN	62
HONG KONG SAR 59	
england Ss	
ninmesota, ua	
alovenia 52	
RUSINAN FEDERATION 52	
ONTARIO, CANADA 51	
ITTHUANIA Sa	
CZECH REPUBLIC 47	
IWEDEN 47	
AUSTRALIASCOTLAND	
rtaly 45	
Quebec, Canada 44	
hungary 43	
international 43	
THAILAND 41	
aulgaria 40	
ROMANIA 38	
norway	38
ITRAEL 3s	
KUWALT 38	
cyprue 36	
colombia	34
IEAN, MGAMIC REP. Of	31

Energy and Physioal Prooecces

Emeray and Physloal Prooecces	
IINGAPORE	63
KOREA REF- OF	59
IAPAN	58
england	54
hungary	54
CZECH REPUBLIC	52
HONG KONG SAR	51
RUSSIAN FEDERATION	49
alovenia	47
ONTAREO, CANADA	46
aweden	45
Australa	45
minnesota, us	46
UTTHUNNIA	44
SCOTLAND	44
UnITED statea	43
rtaly	43
quebec, canada	42
bulgaria	41
international	40
ROMANIA	39
Irank halamic rep. of	39
NORWAY	39
crerue	38
ISRAEL	38
Thailand	38
кuwant	36
colombia	3 a

Ufo Cyolac S Sonntios	
KOREA REP, OF	55
IAFAN	so
HONG KONG SAR	50
SINGAFORE	
RUS3INN FEDERATION	
HUNGMRY	
QUEEEC, CANAD	
MINNESOTA, Us	
Litmuania	
UNITED STATES	
england	
CZECH REPUBUIC	
australia	
slovenia	
bulgmeia	
ital	
sweden	
Ontario, cmand	
ISRAEL	
Intermatonal	
norway	
SCOTLAND	
thallano	
IRAN, IBLAMIC REP. OF	
cyprus	
colomala	
кcuwart	30
ROMANIA	2

Phycloal Chanose	
KOREA REP, OF	
SINGAFORE	
IAFAN	
englano	
RUSSIAN FEDERATION	
slovenia	
hungery	
CZECH REFUELIC	
LITHUANIA	
HONG KONG SAR	
sweden	
Ontario, canada	
Minnesota, us	
anstralia	
UNITED STATES	
norway	
quesec, canada	
scotiand	
ispatel	
crprus	
Italy	
bulgaria	
Internasonal	
ROMANIA	
thallano	
кuwart	
colomela	

Figure 32

Figure 33

TEACHING TIME ON SCIENCE TOPICS: A COMPARISON OF 1995 AND 2007 MN DATA
Grade 4 Science

Figure 34

GRADE 4

- Compared to 1995 when the reported median percent time on Life Science topics was about 50%, the median percent time on these topics decreased in 2007 to about 35\%. However, the range in reported time in on these topics in 2007 appears to have widened. (Figure 34)
- The typical percentage of reported time teachers spent on Physical and Earth Science topics show an increase compared to the 1995 data. The increase in typical reported time is coupled with an increase in the variability in time spent on these topics.

Grade 8 Science

Figure 35

Grade 8 Science (Figure 35)

- The median percentage of time reported on Earth Science topics in 2007 was approximately 70% compared to about 45\% in 1995.
- The increase in typical percent time on Earth Science in 2007 is coupled with increased variability. In at least one classroom teacher reports indicate that no time is devoted to Earth Science. In contrast, there is at least another MN classroom where 100% of teaching time is devoted to Earth Science.
- Compared to 1995, teachers in 2007 report spending less time (on average) on Chemistry, Physics and "other" science topics.
- Although three-quarters of the reported percent time spent on teaching Biology topics in 2007 is less than 5%, there is at least one classroom where the reported percent time on Biology topics is about 85%.

MN SCIENCE CURRICULUM: COMPARISON TO TOP ACHIEVING COUNTRIES

- Intended topic coverage appears scattered and not coherent compared to the composite of the majority of top achieving countries. The curriculum lacked the structure that is required to allow for the development of concepts as they relate to science themes.
- Too many topics were intended to be covered in the early grades. Too few are intended for coverage in the middle school grades. With the abundance of topics intended for coverage in grades one through four, there is little opportunity to develop any deep understanding of science content.
- Some topics were intended for coverage too early, before their time, and then dropped from coverage, and therefore not developed fully throughout the middle grades. Examples are: Atoms, Ions, and Molecules; Chemical Changes of Matter; Sound \& Vibration; and Magnetism. Content related to these topics should be included in the curriculum during the middle grades so that students can establish a foundation of knowledge that will enable them to grasp more complex ideas related to
chemistry and physics when they reach high school.
- All courses specific to a discipline - earth, life, or physical science - carry a high concentration of content areas in their discipline. This is expected but coverage of physical science topics appears to be particularly weak. Physical science topics intended in only one grade or never intended include: Classification of Matter; Atoms, Ions, and Molecules; Chemical Properties of Matter; Chemical Changes of Matter; and Explanations of Physical Changes.
- Other topics from other disciplines were not specifically intended for coverage in any of the eight grades. They include: Earth's Composition; Land, Water, Sea Resource Conservation; Material \& Energy Resource Conservation; Pollution; and Human Nutrition.
- On a positive note, one topic, Energy Types, Sources, Conversions, was intended in four consecutive grades. This likely allows for very thorough development of content related to this topic.
(Figure 36)

Seience Topics Intended at Each Grade in the state of Minnesota

Topics	Grode							
	1	2	3	4	5	6	7	8
Organs, Tissues	0		\bigcirc	-			-	
Physical Properties of Matter	\bigcirc	0		\bigcirc		\bigcirc		\square
Plants, Furngí	0	0	4	\bigcirc			\square	
Animals	0	0	\bigcirc	0			0	
Classification of Matter						\square		
Rocks, Soill		0			-			\square
Light			\bigcirc			\square		
Electricity				0		0		
Life Cycles	\square	\square			-			
Physical Changes of Matter		0		-		\square		
Heat 6 Temperature				\square		\bigcirc		\square
Bodies of Water		\bigcirc		\bigcirc	\bigcirc			\square
Interdependence of Life	\square	\bigcirc	\bigcirc		\square		\square	\square
Habitats ${ }^{\text {d }}$ Niches			\bigcirc					
Biomes \& Ecosystems					0		0	
Reproduction			\bigcirc				\bigcirc	
Time. Space, Mation		0				0		
Types of Fonces	0			-		\bigcirc		\square
Weather \& Climate	0							\square
Planets in the Solar System			6					\square
Magnetism	6	0		0		0		
Earth"'s Composition								
Organism Energy Handling					\square		0	
Land, Water: Sea Resource Conserwation								
Earth in the Solar System	6		\square	\square	\square			\square
Atoms, Ions, Molecules						\square		
Chemical Properties of Matter								
Chemical Changes of Matter						θ		
Physical Cycles				\bigcirc	0			\square
Land Forms					\square			
Material $\&$ Energy Resource Consermation								
Explanations of Physical Changes								
Pollution								
Atmosphere		6			-			\square
Sound \mathcal{A} Vibration			\square			\bigcirc		
Cells				\square			0	
Human Nutrition								
Building \& Breaking					\square			\square
Energy Types, Sources, Corversions					\bigcirc	\bigcirc	\bigcirc	0
Dymamics of Motion		0			0	\square		
Organism Sensing \& Responding							0	

Figure 36

NUMBER OF SCIENCE TOPICS INTENDED IN MINNESOTA SCHOOLS BY GRADE LEVEL (OUT OF 41 TOPICS)

Figure 37

The above analysis is based upon implementation of the 2005 MN science standards. Those standards were revised in 2009 to address a number of concerns, including a number mentioned above. (Figure 37)

Figure 38 shows the comparison between 1995 and 2007 in time spent on the most important topics at
grade 4 in science. Notice how the amount of time spent on "other" (non-important) topics is reduced in 2007. Figure 39 shows how the 2007 time spent compares to the international focus and TIMSS test.

Figures 40 and 41 show the same information for grade 8 science.

Figure 38

Figure 39

Figure 40

Figure 41

CONCLUSIONS: WHAT CAN MINNESOTA LEARN FROM TIMSS 1995 AND 2007?

Minnesota has made great progress since 1995; it appears that internationally benchmarking our standards has brought significant benefit to our state in achieving a focused, rigorous and coherent set of standards.

For MN students, the competition for jobs will not be just the surrounding states - rather our students will compete for jobs globally and must be prepared to compete successfully at that level. Those nations are not standing still - and neither can Minnesota. We must seek to continually improve our standards and our success in delivering that information to all students.

The TIMSS substrand information provides excellent insight into which particular topics in math or science need greater emphasis in the curriculum. This may be best accomplished through development of Standards Frameworks and quality statewide staff development.

As the national efforts for Common Core Standards evolve, it may be possible to achieve efficiencies in resource development by collaborating with Massachusetts and other states.

It is clear that some Minnesota students are being left behind - particularly student subgroups that are in poverty. Though solutions to this problem have been elusive, the TIMSS analysis brings to light the fact that students in poverty are often not exposed to the correct level of rigorous content, therefore they might not even have the opportunity to learn that content.

Further analysis will bring additional insights into next steps for Minnesota educators and policymakers, especially in the area of Science. Check the SciMathMN website for updates to this TIMSS report. (www.scimathmn.org)

FOR FURTHER INFORMATION ABOUT TIMSS...

For U.S. TIMSS Information:

- NCES U.S. TIMSS Website
http://www.ed.gov/NCES/timss
- Boston College TIMSS Website http://timss.bc.edu/
- Michigan State University U.S. 1995 TIMSS

Website http://ustimss.msu.edu

For Minnesota TIMSS Information:

- Call SciMath ${ }^{\text {MN }}$ at 612-209-1739
- E-mailinfo@scimathmn.org
- Visit the SciMath ${ }^{\mathrm{MN}}$ website at www.scimathmn.org
- Summer 2008: Release of complete Minnesota TIMSS Report (expanded version of this preliminary summary) by SciMath ${ }^{\mathrm{MN}}$.
- This document as well as the preliminary report will be posted on the SciMath ${ }^{\mathrm{MN}}$ website and may be downloaded in full color to enhance the interpretation of graphs.

ABOUT SCIMATH ${ }^{M N}$...

Founded in 1993, SciMath ${ }^{\text {MN }}$ is a partnership among business, education and state government pursuing statewide improvement in the teaching and learning of K-12 mathematics, science and technology education based on the national mathematics, science and technology education standards. SciMath ${ }^{\text {MN's }}$ mission is to increase the educational achievement and participation of all Minnesota students in science and mathematics to help them meet the complex challenges of their future.

SciMath ${ }^{M N}$ gratefully acknowledges the generous support of the Minnesota Legislature, the Minnesota Department of Education, Michigan State University (under the leadership of William H Schmidt) and the following Minnesota businesses and organizations in ensuring the 2007 TIMSS participation, as well as the 2008-2009 analysis and informational events.

Medtronic MINNESOTA BUSINESS PARTNERSHIP

Science
Museum

[^0]: © 2008 Center for Research In Mathematics and Sclence Education, Michigan State University

